

An algorithm for monitoring informal constructions – An application in coastal areas

Ch. Psaltis, Ch. Ioannidis

Coastal areas and land administration – Building the capacity San José, Costa Rica, 12-15 November 2007

Coastal areas and land development

Coastal areas more developed than continental areas

- Overconcentration of human activities
- · Lack of planning policy
 - Unplanned development
 - Informal settlements
- · When in large scale, environmental risk

Coastal areas and land administration - Building the capacity, San José, Costa Rica, 12-15 Nov. 2007

Laboratory of Photogrammetry School of Rural and Survey Engineering

The case of Greece

- · Extended coastline
- Strict regulations governing coastal areas' development

 common use zone ~ 30-100 m width along the coast
 - specific land use types for coastal areas
- Increased demand for land in coastal areas
 - residential usetourist use
- High land value
- Informal buildings in case of
 - lack of spatial planning policy
 - lack of cadastre

Coastal areas and land administration - Building the capacity, San José, Costa Rica, 12-15 Nov. 2007

Laboratory of Photogrammetry School of Rural and Survey Engineering

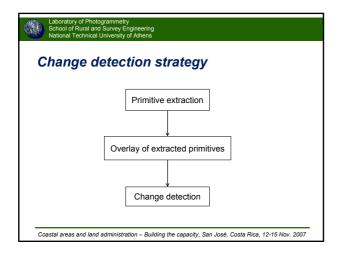
Informal building in Greece

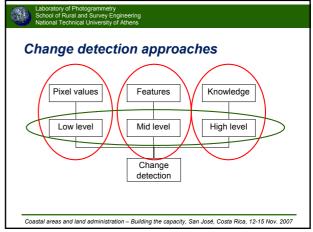
- Good constructions
- · One or two stories
- · On legally owned land parcels
- Approximately 1 out of 3 new houses are in violation or without building permit
- Estimated 1,000,000 informal residences (out of 7M)

Coastal areas and land administration - Building the capacity, San José, Costa Rica, 12-15 Nov. 2007

Monitoring informal building

- · Important to locate and monitor
- · Technical and administrative issues
- Automatic and objective procedure
 - low cost technique
 - no bureaucracy or corruption


Contribution of modern photogrammetric techniques for the design of an automated and objective procedure for the detection of informal constructions

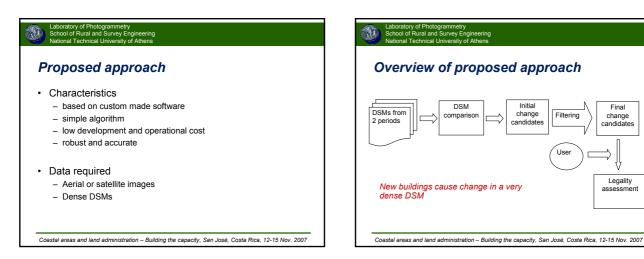

Coastal areas and land administration - Building the capacity, San José, Costa Rica, 12-15 Nov. 2007

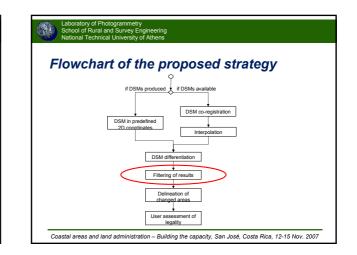
Laboratory of Photogrammetry School of Rural and Survey Engineering National Technical University of Attens Prerequisites of technical procedure Informal building monitoring = Change detection + Legality Periodic control at short epochs over a large site – Automation – Low cost of data Monitoring of change in single building scale – High accuracy

- No omissions
- · Legality assessment aided by user

Coastal areas and land administration - Building the capacity, San José, Costa Rica, 12-15 Nov. 2007

Laboratory of Photogrammetry School of Rural and Survey Engineering National Technical University of Athens


Commercial change detection software


- e-Cognition™, Defiens
 - object oriented classification
 - image segmentation
 - a priori knowledge
 - fuzzy logic
- Feature Analyst™, Visual Learning Systems Inc.
 - machine learning
 - training, correction, iteration

Laboratory of Photogrammetry School of Rural and Survey Engineering

Commercial or custom made software?

Commercial software	Custom made software
\bigcirc	٢
\odot	\otimes
	\odot
	\odot
\odot	٢
	software © © • • •

Initial

change

candidates

Filtering

Use

Final

change

candidates

Legality

assessment

Parameters influencing the results

- · Density and accuracy of the DSMs
 - building area > 50 m² → 10 points → 1-2 m GSD
- Point to point correspondence in the two periods
 - co-registration, interpolation
 - production in the same horizontal grid coordinates
- · Vegetation growth and natural anaglyph changes
 - Arid and low vegetation
 - Rare significant anaglyph changes

Coastal areas and land administration - Building the capacity, San José, Costa Rica, 12-15 Nov. 2007

oratory of Photogrammetry ool of Rural and Survey En sity of Athe al Technical Uni

Filtering stage

- 1. Threshold of detected change $3 \text{ m} \le \Delta Z \le 7 \text{ m}$
- 2. Threshold of area size for regions detected as changed reject blob if (blobSize < 10 pixels)
- 3. Threshold of shape and size SHAPE = 100% - (blob_area / circumscribed_rect)*100% reject_blob if (abs(SHAPE)<a AND blobSize<b)

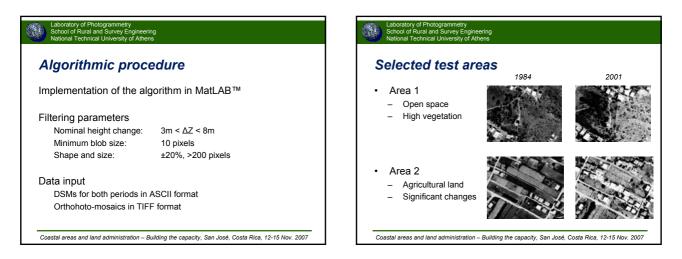
34 ol of Rural and Survey E eerina sity of Athens

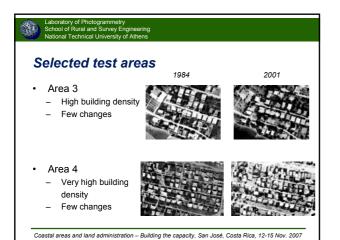
Test application in Vravrona coast

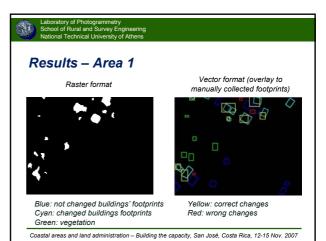
Data used

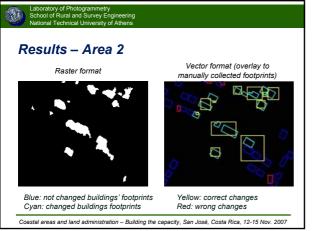
- Aerial images
 - 1984 period
 - strip of 3 panchromatic images
 - 1:6000 scale
 - scanned at 14µm
 - 2001 period
 - stereopair of color images
 - 1:10000 scale
 - scanned at 14µm
- GCPs
 - 9 GCPs, along the edges and the center of the area of interest

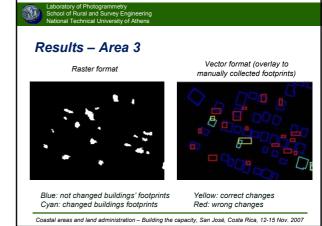
Coastal areas and land administration - Building the capacity, San José, Costa Rica, 12-15 Nov. 2007

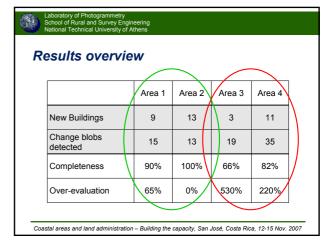

Laboratory of Photogrammetry School of Rural and Survey Engineering National Technical University of Athens


Photogrammetric procedures in LPS™


 Simultaneous aerotiangulation for both periods with bundle adjustment


	X axis	Y axis	Z axis
Average residuals of GCPs (m)	0.013	0.025	-0.017
Maximum residuals of GCPs (m)	0.210	0.162	0.126


- · Automatic DSM production with 1 m GSD
- Orthophoto-mosaics with 0.2 m GSD



Results – Area 4	
Raster format	Vector format (overlay to manually collected footprints)
Blue: not changed buildings' footprints Cyan: changed buildings footprints	Yellow: correct changes Red: wrong changes

Conclusions

- Informal development has social, fiscal, administrative and technical parameters
- The proposed technique supports the administrative task
- · Quick and objective procedure
- · Custom made software is used
- Commercial software cannot achieve the appropriate results
- Promising results in areas of informal building in Greece
- Further testing in other sites for fine tuning and enhancing the technique