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ABSTRACT 

We made a simple experiment to show the implications of the (usually ignored) Law of Error Propagation in 
accelerometers, which represent the most common instrument for structural and geotechnical engineering and for 
inertial positioning.  Double numerical integration of the acceleration is used to compute displacements, which are 
characterized by drift, a gradually increasing error, and some deterministic techniques to filter this stochastic error 
are adopted.  We used a simple, controlled experiment and 3-D MEMS accelerometers, included in all modern 
smartphones, to show some characteristics of the (stochastic) errors in computer displacements (“drifts”). Two fully 
collocated smartphones were attached in the wall or the floor of the cabin of a lift of multi-story buildings, and were 
forced to a linear controlled path, so that the errors in estimates of the displacements in three axes can be 
controlled.  Displacement errors (drifts) are stochastic and can be described by the law of error propagation, while 
this experiment, in different variations, can be used even in classroom teaching. 

 
 
 

Introduction 
With the advent of modern electronic instruments and 
of modern computational techniques permitting 
collection and analysis of masses of data, various 
aspects of the theory of measurements and errors have 
been ignored, and measurements and measurement-
derived data are usually assumed to be characterized by 
white noise only (cf. Moschas and Stiros, 2019; for a 
rare example see El Diasty et al 2008), while rather 
deterministic techniques are used to filter errors. 
A method to highlight the non-random character of 
errors and of their propagation in modern instruments 
is to study drift in displacements derived from 
accelerometers, which represent the most common 
instrument for structural and geotechnical engineering 
(Boore and Bomer, 2005) and for inertial positioning (El 
Diasty et al 2008).   Since acceleration is the second 
derivative of distance, double numerical integration of 
accelerometer data is widely used to compute 
displacements, for example during earthquakes.  
However, such displacements are characterized by a 
cumulative error in the form of a monotonous 
increasing function, known as “drift”, occasionally of 
impressive amplitude (Fig 1), and different simple or 
more complicated techniques to remove this drift have 
been proposed (e.g. Boore and Bommer, 2005).   
In this article we examine this problem from the point 
of view of the theory of errors, using simple controlled 
experiments that can be easily reproduced by anybody 
and anytime, without cost, using usually available  

 
 

 
Figure 1. Acceleration, velocity and displacement for a 

station during the Chi-Chi 1999 Taiwan earthquake.  Red 
curves indicate uncorrected velocity and displacement, known 
as “drift”, a nearly monotonous increase of the error in 
computed velocity and displacement; the latter may reach 
unrealistic values, tens of meters after 80 seconds.  Black 
curves indicate corrected time histories of velocity and 
displacement based on deterministic approaches, usually 
constrained by the known value of the drift at the last point of 
the time series, assuming no total displacement. This 
approach is satisfactory for earthquakes (short duration, 
usually no permanent displacement), but not for continuously 
moving objects (drones etc.). Modified after Boore and 
Bommer (2005). 
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hardware.  These experiments can be modified to be 
made even in a classroom in different levels. 
For our experiments we used MEMS accelerometers 
which are currently incorporated in miniature form in 
all modern smartphones.  These can compute 
acceleration in an easily recognized cartesian system, 
while data collection and analysis with output in CSV 
files is easily made through freely available APPs.  For 
the experiments, we used two different smartphones, 
side-by-side (fully collocated), fixed on the wall of the 
lift of an elevator.  This permits to constrain well the 
displacement derived from the recorded acceleration.   
The overall approach is different from that used by 
various investigators to test the response of MEMS 
accelerometers (Evans et al, 2014; Moschas and Stiros, 
2019) 
This approach, based on simple, controlled experiments 
which can easily modified and adapted to local 
conditions, and on data analysis with simple, popular 
software (for example EXCEL) may shed light to the 
stochastic character of displacements derived from 
accelerometer data is an example of techniques that 
can revolutionize teaching in broad fields and at various 
levels, but can also be used in what is known as citizen 
response and contribution in science (cf. Lawrence et al 
2014). 
 

Methodology 
Acceleration is the second derivative of displacement, 
and double acceleration of displacement leads to 
displacement.  In the case of experimental data, we 
assume that during a certain time interval, an 
accelerometer has recorded ν measurements of 
acceleration (γi, ti) along a certain axis with a constant 
sampling interval τ at times ti.  We also assume that 
observations of acceleration γi are characterized by 
white noise of small amplitude (standard error σγ), so 
that observations of acceleration γi differ little from 
from the ‘true” values (Fig. 1).  We also assume zero 
acceleration and velocity at t=0. 
As is explicitly analyzed in Stiros (2008), using numerical 
integration, velocity at tν is described as the area 
between x-axis and the graph of accelerations between 
t=0 and tν and is given by equation 

𝜐ఔ = ∑ 𝜏𝛾ఐ
ఔ
ఐୀଵ     (1) 

 
Similarly, displacement between t=0 and tν is given by 
equation  

𝑢ఔ = 𝜏ଶ∑ (𝜈 + 1 − 𝑖)𝛾
ఔ
ୀଵ  (2) 

 
According to the law of error propagation, the typical 
error σf of a variable f=f(χ1, χ2, ….χν), which is a function 
of ν uncorrelated variables χ1, χ2, ..., χν with random 
noise with typical errors σχ1, σχ2, … σχν, is given by the 
equation  
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Figure 2. The “true” acceleration (smooth, continuous line 

in bold) is recorded/sampled as γi by the accelerometer at 
moment ti, assumed with a constant rate.  The area of each 
trapezoid formed by consecutive observations is summed till a 
certain moment tν to compute the velocity υν at this specific 
moment. This corresponds to numerical integration. A similar 
process permits to compute displacements uν from cumulative 
summation of velocities through double numerical 
integration. After Stiros (2008). 

and after computations and simplifications, for large 
numbers of ν, the uncertainty of displacement is given 
by equation  

𝜎௨ഌ = 0.6𝜏ଶ𝜈ଶ𝜎ఊ   (4) 
 

This indicates that the error in the displacement uν 
derived from an accelerograph increases with the 
square of the number of measurements, and that at a 
certain probability level it is located within a space 
defined by ( , )u u 

  .    

 
 

Experiment 
We used common cheap micro-MEMS 3-D 

accelerographs found in most smartphones, equipped 
with a common, cost-free App (for example Physics 
Suite© etc.) to record acceleration, usually in non-
constant intervals and with a mean rate of 10-20Hz.  
The two smartphones were mounted side by side on 
the wall or the floor of an elevator cabin in a multi-story 
building, with their side parallel to a cabin corner.  This 
signifies that the two smartphones were forced to 
record the motion of the elevator cabin, in intervals of 
movement and of standstill along the vertical axis.    

For this reason, we had several constraints to the 
motion recorded by the two smartphones:  the “true” 
overall path between floors, in various combinations, 
was easily recorded, intervals of movement and of no 
movement were alternating, while along the two 
horizontal axes the “true” displacement was null. This 
permits to compare displacement derived from 
accelerometers with their ‘true” values.  
We made several experiments using the collocated 
smartphones and recorded the acceleration of the 
elevator cabin while it was moving from one floor to the 
other in different combinations, noticing the exact track 
of the elevator.  The experiment was repeated using 
different smartphones to avoid case-dependent results. 
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Figure 3. Recorded accelerations along a horizontal axis (x) and the vertical axis (z), for two different experiments, slightly 
differing in the motion of the elevator motion. Acceleration along the horizontal axis corresponds mostly to noise, while along 
the vertical axis to the motion of the elevator cabin between floors; first positive acceleration, then motion with nearly constant 
velocity (no significant acceleration) and finally negative acceleration before stopping. Red and blue indicate the two different 
smartphone sensors, while a green line the approximate “true” values (known elevator path). 

 
 
 
 

 
 

Figure 4. Computed displacements based on the accelerations of Figure 2.  Top line indicates computed displacement along a 
horizontal (x) axis in which no displacement is expected (i.e. computed displacement corresponds to noise).  The bottom line 
shows the movement of the elevator cabin between floors, along the vertical (z) axis.  Red and blue indicate the two different 
smartphone sensors, while a green line the approximate “true” path.   Mark the rather random character of drift. 
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Data Analysis 
Data were downloaded from the smartphones in CSV 
files, which can be readily be analyzed using software 
such as EXCEL© or ORIGIN©.  In the case the 
resolution of the timing output is only a second, or a 
tenth of second (i.e. of series of measurements 
assigned to the same time), timing was derived from 
interpolation assuming piecewise constant rates.  
This approximation has not serious impact in the 
accuracy of results and led to an easily analyzed data 
set. 
Using eq. (2) we computed displacements during 
several tests involving movement of the elevator 
cabin from one floor to other.  Selected results are 
plotted in Figures 2 and 3. 

 
 

Discussion 
The results of Fig 4 seem astonishing, because they 
show that the error (“drift”) in the x-axis reaches a 
few meters, while in the z-axis tens of meters.   This 
is not an unknown effect, and is known as “drift” in 
earthquake engineering (Fig 1) , and there have been 
proposed different techniques to remove it, 
especially from earthquake records:  The basic idea is 
that after an earthquake no permanent motion 
remains, so that the deflection of the last point is 
known, and a correction can be made to remove drift.  
In many cases, the uncorrected displacement is 
approximated by a first or second order polynomial 
which is subtracted from the uncorrected 
displacement, and the residual corresponds to a 
corrected displacement record (Wang et al, 2003).  
Another approach is to use signal analysis 
techniques, for example to remove part of the 
spectral content of the acceleration record so that 
the drift in the displacement is removed (Fig 1; Boore 
and Bommer, 2005).     
Figures 3 and 4, however, show that drift has not a 
deterministic, but a stochastic character:   different 
instruments lead to a different drift (Wang et al, 
2003; Moschas et al, 2015; Moschas and Stiros, 
2019), and if the experiment is repeated, the 
displacement history is different; this last 
observation cannot obviously be made with 
earthquakes.   What is also evident is that error (drift) 
increases with time (number of observations) in a 
rather polynomial form, in agreement with eq.  (4).    
The significance of this equation, derived from the 
law of error propagation, is that the typical (standard) 
error of computed displacement can only be within 
certain limits under certain probability level, and it 
cannot be more deterministically defined.  
Another point is that errors seem much higher along 
the vertical than the horizontal axis, and this seems 
contradictory to equation (1), assuming that 
acceleration errors are equal in all three axes.  
However, equation (1) is valid under the assumption 

of random and uncorrelated errors, which is an 
oversimplification (cf. Moschas and Stiros, 2019).  In 
addition, errors are amplified by high acceleration 
peaks (Stiros, 2008), as those shown in Fig 3. 
A final point is that the observed pattern of errors is 
not limited/ amplified in the case of miniature MEMS 
in smartphones, but it is characteristic of all types of 
accelerometers, as experiments with force-balance 
(Moschas et al., 2015) and high accuracy MEMS 
(Moschas and Stiros, 2019) indicate.   
 

 
Educational Implications 

The experiment discussed requires one or two 
smartphones, a lift, a free-downloadable App and 
popular software such as EXCEL.  Hence in simple 
form it can be easily repeated by anybody, and it can 
also be easily modified to be made in a classroom; for 
example, the smartphones can be tied together in a 
protective plastic bag and forced to move along a 
square marked on a floor or a wall, or along vertical 
room corners, and permit easy and safe experimental 
education at different levels, and also inspire citizen 
to contribute in problems of the society (for example 
concerning earthquakes; Lawrence et al, 2014).  
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