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ABSTRACT

It is well known that, within a Gauss-Markov Model (GMM), the Best Linear Estimate (BLE) shows smaller Mean

Squared Errors (MSE) for the estimated parameters if compared with the more traditional BLUUE (Best Linear Uni-

formly Unbiased Estimate). This result, however, is only of theoretical value as the BLE itself cannot be numerically

evaluated without further assumptions. One common approach is based on the use of the BLUUE whenever an

approximation of the BLE is required which leads to the so-called “empirical BLE.”

In contrast, Schaffrin (2000) had argued that, at least in the univariate case of “direct/replicated” observations of

one parameter, the so-called “reproducing BLE” should be superior to the empirical BLE whenever it exists. Both are,

of course, nonlinear estimates in the end, and the formulae for their MSE can only be approximations.

Here, we shall consider the 2-D case where we put the necessary generalizations of the repro-BLE to work as

presented by Schaffrin and Xu (2017). Concretely, a single point will be adjusted within an (existing) planar geode-

tic network for which we compare the BLUUE, the empirical BLE, and the repro-BLE (after checking the existence

condition) of the point’s coordinates.

INTRODUCTION

The reproBLE had first been introduced by Schaffrin

(2000) for the 1-D case of direct/replicated observa-

tions. There, it had been argued that the reproBLE

should, in general, turn out superior to themore com-

monly used empirical BLEwhenever it exists. Now, we

want to extend our discussion to the 2-D case where

the coordinates of a single new point are to be deter-

mined in relation to an existing planar geodetic net-

work.

Based on the initialwork by Schaffrin and Xu (2017),

we shall develop the “locus” of all estimates of type

reproBLE (an ellipse), should they exist at all. Out of

these infinitely many estimates, we shall identify four

that seem to be of major interest, due to their partic-

ular geodetic properties, and compare them with the

more traditional estimates of type BLUUE and empir-

ical BLE.

1. THE BIVARIATE GAUSS-MARKOV MODEL

1.1. BLUUE and BLE

Let the model be defined by

y = A
n×2

ξ + e, e ∼ ( 0
n×1

, Σ
n×n

= σ2
0P

−1), (1)

where, after linearization, A is the n × 2 coefficient

matrix with rkA = 2, and ξ is the unknown 2× 1 pa-
rameter vector. Moreover, y is the n × 1 vector of

observational increments, e is the (unknown) n × 1
random error vector whose expectation isE{e} = 0,
while its dispersion matrix D{e} = σ2

0P
−1 is split

into the product of an (unknown) variance compo-

nent σ2
0 and a (given) n × n cofactor matrix P−1

(whose inverse is the weight matrix P ).

It is well known that, inmodel (1), the LEast Squares

Solution (LESS) represents the BLUUE (Best LinearUni-

formly Unbiased Estimate) and is given by

ξ̂ = N−1c ∼ (ξ, σ2
0N

−1) for [N, c] = ATP [A,y],
(2)

meaning that the expectation E{ξ̂} = ξ for all

ξ ∈ Rm and that the dispersion matrix

D{ξ̂} = σ2
0N

−1 = MSE{ξ̂}, (3)

therefore, equals the Mean Squared Error matrix. In

addition, an unbiased estimate of σ2
0 can be obtained

via

σ̂2
0 = (n− 2)−1(yTPy − cT ξ̂) ∼

∼ (σ2
0 , 2(σ

2
0)

2
/(n− 2)). (4)

In contrast, the Best Linear Estimate (BLE) of ξ is de-

rived from the principle

trMSE{ξ̄ = Ly} = tr[D{ξ̄ = Ly}+
+E{Ly− ξ} ·E{Ly− ξ}T ] = σ2

0 · [tr(LP−1LT )+

tr(LA− Im)ξσ−2
0 ξT (LA− Im)T ] = min

LT
. (5)

The necessary condition for the BLE ξ̄ = L
2×n

y then

reads

1

2

∂trMSE{ξ̄}
∂LT

=
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= (P−1 +Aξσ−2
0 ξTAT ) · L̄T −Aξσ−2

0 ξT
.
= 0,

(6a)

respectively

L̄ = ξσ−2
0 ξTAT · (In + PAξσ−2

0 ξTAT )−1P =

= ξ · σ−2
0 (1 + ξTNξσ−2

0 )−1 · ξTATP, (6b)

leading to the representation

ξ̄ = L̄y = ξ · (ξ̄T c)/(σ2
0 + ξTNξ). (7)

The bias of the BLE can now be computed as

E{ξ̄} − ξ = −ξ · σ2
0/(σ

2
0 + ξTNξ), (8a)

and its Mean Squared Error matrix as

MSE{ξ̄} = σ2
0 · [ξ(σ2

0 + ξTNξ)−1ξTNξ

(σ2
0 + ξTNξ)−1ξT + ξ(σ2

0 + ξTNξ)−1·
· σ2

0 · σ−2
0 · σ2

0(σ
2
0 + ξTNξ)−1ξT ],

or

MSE{ξ̄} = σ2
0 · ξ(σ2

0 + ξTNξ)−1ξT , (8b)

which is a rank-1matrix.

1.2. The empirical BLE and the reproBLE

Since the BLE ξ̄ from (7) cannot be evaluated without

further knowledge of ξ itself, it has been proposed to

replace ξ by the BLUUE ξ̂, thus leading to the empiri-

cal BLE

ˆ̄ξ = ξ̂ · (σ̂2
0 + ξ̂TN ξ̂)−1(ξ̂T c) =

= ξ̂ · cTN−1c

σ̂2
0 + cTN−1c

= (9a)

= ξ̂

[
(n− 2)(cTN−1c)

yTPy + (n− 3)(cTN−1c)

]
, (9b)

which turns out proportional to the BLUUE ξ̂, but
somewhat shorter than ξ̂, hence also known as

“shrinkage estimate;” cf. Gruber (1998). For other

choices, see Xu (1998).

Its Mean Squared Error matrix may now be approx-

imated by replacing ξ and σ2
0 in (8b) by ξ̂ and σ̂

2
0 , lead-

ing to

MSE{ˆ̄ξ} ≈ σ2
0 · ξ̂(σ̂2

0 + cTN−1c)−1ξ̂T (10)

which, again, is a rank-1matrix.

In contrast, for the reproducing BLE (reproBLE), the

estimate to replace ξ and the right side of (7) ought

to be the same as the left side. Thus, we have to solve

the nonlinear equation

¯̄ξ = ¯̄ξ(σ2
0 +

¯̄ξTN ¯̄ξ)−1(¯̄ξT c), (11a)

or, after excluding the trivial solution (¯̄ξ = 0),

σ2
0 +

¯̄ξTN ¯̄ξ − ¯̄ξTN ξ̂ = 0, (11b)

respectively(
¯̄ξ − 1

2
ξ̂

)T

N

(
¯̄ξ − 1

2
ξ̂

)
=

1

4
· ξ̂TN ξ̂−σ2

0 , (11c)

which represents an ellipse as location for all esti-

mates of type reproBLE as long as the inequality

4σ2
0 < ξ̂TNξ (12)

is guaranteed. Obviously, when σ2
0 goes to 0, the

BLUUE ξ̂ itself becomes one of the reproBLEs. Vice

versa, when σ2
0 approaches ξ̂TN ξ̂/4, one half of the

BLUUE becomes the only existing reproBLE (and the

ellipse shrinks to this point).

2. Ù�ÖÙÊBLEÝ Ê¥ ®Äã�Ù�Ýã

Following up on the above observation, for reason-

ably small values of σ2
0 , the interesting choices of the

reproBLE should all be smaller than theBLUUE (shrink-

age estimates), butwould fall in its neighborhood. We

identified four of them on the basis of their geometric

properties, each of which are depicted in Figure 1.

¯̄ξ1 is the endpoint of the major ellipsoidal axis;

¯̄ξ2 is the farthest point of the ellipse from the origin;

¯̄ξ3 is the orthogonal projection of ξ̂ onto the ellipse;

¯̄ξ4 is the far ellipse point that is proportional to ξ̂.

ξ1

ξ2

ξ̂1/2

ξ̂2/2

λ1λ2

ξ̂ (BLUUE)

¯̄ξ1

¯̄ξ2
¯̄ξ3

¯̄ξ4

θ

Figure 1: Ellipse centered at (1/2)ξ̂, with rotation an-
gle θ, semi-major axis length λ1, and semi-minor axis

length λ2

Let us now derive the corresponding formulas for

the above four points of interest.

Point 1: First, we scale the matrixN to arrive at the

new matrix

Nscaled := (
1

4
·ξ̂TN ξ̂−σ2

0)
−1 ·N = U ·Λ2 ·UT (13a)
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which we decompose into eigenvalues and eigenvec-

tors, with

U :=

[
cos θ − sin θ
sin θ cos θ

]
and Λ :=

[
λ1 0
0 λ2

]
.

(13b)

Then we can write

¯̄ξ11 =
1

2
· ξ̂1 + λ1 · cos θ,

¯̄ξ12 =
1

2
· ξ̂2 + λ2 · sin θ.

(14a)

(14b)

Point 2: Secondly, we maximize ¯̄ξT ¯̄ξ subject

to (11b), resp. make the Lagrange target function

Φ(¯̄ξ, λ) := ¯̄ξT ¯̄ξ + λ · (σ2
0 +

¯̄ξTN ¯̄ξ − ¯̄ξTN ξ̂) (15)

stationary. This leads to the necessary condition

1

2

∂Φ

∂¯̄ξ
= ¯̄ξ2 +N ¯̄ξ2 · λ̂− 1

2
c · λ̂ .

= 0 (16a)

and consequently to

¯̄ξ2 =
1

2
(I2 + λ̂ ·N)−1c · λ =

=
1

2
(λ̂−1 · I2 +N)−1c. (16b)

The other necessary condition will then come from

∂Φ

∂λ
= σ2

0 + (¯̄ξ2)TN ¯̄ξ2 − (¯̄ξ2)T c
.
= 0, (17a)

which, after inserting (16b), leads to the polynomial

4σ2
0 + cT (λ̂−1 · I2 +N)−1N(λ̂−1 · I2 +N)−1c−

− 2cT (λ̂−1 · I2 +N)−1c = 0, (17b)

or

4σ2
0 + cT (λ̂−1 · I2 +N)−1c =

= λ̂−1 · cT (λ̂−1 · I2 +N)−2c, (17c)

which needs to be solved for λ̂−1. The inverse

Lagrange multiplier can then be re-implemented

into (16b) to find ¯̄ξ2.

Point 3: Thirdly, we minimize the distance between

the BLUUE ξ̂ and ¯̄ξ3, namely (¯̄ξ3−ξ̂)T (¯̄ξ3−ξ̂), subject
to (11b), resp. make the Lagrange target function

Φ(¯̄ξ, λ) := ¯̄ξT ¯̄ξ−2¯̄ξT ξ̂+ ξ̂T ξ̂+λ·[σ2
0+

¯̄ξTN(¯̄ξ− ξ̂)]
(18)

stationary. This leads to the necessary condition

1

2

∂Φ

∂¯̄ξ
= ¯̄ξ3 − ξ̂ +N ¯̄ξ3 · ˆ̂λ− 1

2
c · ˆ̂λ .

= 0 (19a)

and consequently to

¯̄ξ3 = (I2 +
ˆ̂
λ ·N)−1(ξ̂ +

1

2
c · ˆ̂λ) =

= ξ̂ − 1

2
(I2 +

ˆ̂
λ ·N)−1c · ˆ̂λ. (19b)

The other necessary condition will then come from

∂Φ

∂λ
= σ2

0 + (¯̄ξ3)TN(¯̄ξ3 − ξ̂)
.
= 0, (20a)

which, after inserting (19b), leads to the polynomial

2σ2
0 − (ξ̂ +

1

2
c · ˆ̂λ)T (I2 + ˆ̂

λ ·N)−1·

·N · (I2 + ˆ̂
λ ·N)−1c · ˆ̂λ = 0, (20b)

or

2σ2
0 − (ξ̂ +

1

2
c · ˆ̂λ)T (I2 + ˆ̂

λN)−1c =

= (ξ̂ +
1

2
c · ˆ̂λ)T (I2 + ˆ̂

λN)−2c, (20c)

which needs to be solved for
ˆ̂
λ. This Lagrange multi-

plier can thenbe re-implemented into (19b) to find ¯̄ξ3.

Point 4: Fourthly, we seek the proportionality fac-

tor α in ¯̄ξ4 = α · ξ̂, which leads to the equation

α2 · (ξ̂TN ξ̂)− α · (ξ̂TN ξ̂) + σ2
0 = 0 (21)

and thus to the solution

α =
1

2
+

1

2

√
1− 4σ2

0/(c
TN−1c). (22)

Note that α approaches 1 when σ2
0 approaches 0.

3. AÄ �ø�ÃÖ½�

A suitable example will be presented at the JISDM

2019 conference.

4. CÊÄ�½çÝ®ÊÄÝ

In this paper, the reproBLE has been studied for single

point adjustments in 2-D. Its location is defined by an

ellipse as long as the existence condition (12) holds.

Among four different reproBLEs of special interest,

only the third and fourth seem to be superior to the

BLUUE in our example (but not in others). Hopefully,

the comparison of their formal MSE matrices will pro-

vide more clarity.
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